fallback

Нов материал променя бъдещето на батериите за електромобили

Манганът се превръща в надежда за намаляване на разходите и повишаване на устойчивостта

Търсенето на по-устойчиви и икономични алтернативи на сегашните батерии за електрически превозни средства кара учените да изследват нови материали. Един обещаващ вариант е използването на манган в батериите, което може да трансформира индустрията за електрически превозни средства.

Развитието на електрическата мобилност до голяма степен зависи от напредъка в технологията на батериите. Досега литиево-йонните батерии, базирани главно на материали като никел и кобалт, доминираха на пазара, като те са от съществено значение за растежа на електрическата мобилност, но производството и използването им представляват значителни предизвикателства.

От една страна, цената на тези материали е висока, а добивът и преработката им водят до екологични и социални проблеми. Освен това, с нарастващото търсене на електрически превозни средства, необходимостта от намиране на по-достъпни и екологични решения е от решаващо значение.

Тук се намесва манганът, който се намира в изобилие и е по-евтин метал от никела и кобалта. Използването му в батерии може не само да намали производствените разходи, но и да смекчи зависимостта от ограничените ресурси и да подобри устойчивостта на производството на батерии.

Мангановите батерии всъщност не са нови, но напредъкът в развитието им досега беше ограничен. Изследователи обаче работят върху подобряване на LiMnO2 (литиев манганов диоксид) като материал за положителния електрод (катод). Този материал има предимството да бъде по-достъпен и икономичен, но работата му е възпрепятствана от структурни ограничения.

Скорошно проучване, публикувано в изданието ACS Central Science, отбелязва значителен напредък в тази област. Изследователите са открили, че ключът към подобряването на работата на LiMnO2 се крие в кристалната структура на неговия основен материал.

Чрез синтезирането на LiMnO2 в моноклинна структура учените са успели да активират структурен преход, който значително подобрява работата му като електрод. Тази структура също така позволява по-голяма енергийна плътност, достигайки 820 Wh kg⁻¹, надвишавайки 750 Wh kg⁻¹ на материалите на базата на никел.

Наноструктурираният LiMnO2 с доменни структури и по-голяма повърхност предлага голям обратим капацитет с отлична способност за скорост на зареждане, което е основен характер за приложенията на електрически превозни средства.

Друго от големите постижения на този напредък в мангановите батерии е способността им да поддържат бързо зареждане, което е от огромна важност за електрическите превозни средства. Освен това, един от най-честите проблеми с мангановите батерии - влошаването на напрежението с течение на времето, не изглежда да е проблем в тази нова LiMnO2 наноструктура.

Намаляването на напрежението е феномен, който се отразя върху дългосрочната производителност на батерията, но в случая с тази нова технология изследователите не са наблюдавали това поведение. Въпреки обещаващия напредък, остава едно огромно практическо предизвикателство - разтварянето на мангана с течение на времето. Този проблем е идентифициран като следствие от фазови промени на материала и реакции с киселинни разтвори.

Изследователите обаче са предложили ефективни решения, като използването на силно концентрирани електролити и покрития от литиев фосфат, които могат да предотвратят или смекчат това явление. Те създават батерия, която възстановява остатъчната енергия, за да постигне автономност от 500 км, като тя вече се изпробва на Hyundai Ioniq 5.

Този напредък в развитието на мангановите батерии има огромен потенциал за индустрията за електрически превозни средства. Като предлага по-евтина и по-устойчива алтернатива на никел/кобалтовите батерии, LiMnO2 може да се превърне в жизнеспособна опция за широкомащабно производство. Освен това способността му да поддържа бързо зареждане и да предотвратява влошаване на напрежението го прави идеален кандидат за използване в луксозни превозни средства, където производителността е от първостепенно значение.

Сега дългосрочната цел пред учените е комерсиализацията и промишленото производство на тези батерии. Ако бъде постигнато, това не само ще намали цената на електрическите превозни средства, но и ще допринесе за глобалната устойчивост чрез намаляване на зависимостта от скъпи материали като никел и кобалт.

fallback
fallback
Последни